Investigation of MAML for Few-Shot Deep
Reinforcement Learning

Kevin Hu Brian Wu
UC Berkeley UC Berkeley
kevin.hu@berkeley.edu wubrian@berkeley.edu
Extended Abstract

In this project, we aim to explore how meta-learning can be applied
to reinforcement learning tasks (Meta-RL). Among the many meta-
learning approaches, we chose to use a gradient-based meta-RL
algorithm known as Model-Agnostic Meta Learning (MAML). The
primary idea behind MAML is to train our model on various training
tasks, then update it based on how well it was able to adapt to the
sampled training tasks in a few gradient steps. This allows us to
essentially train a good initialization for our model parameters with
which we hope that, when learning on new tasks similar to those
seen during meta-training, the model will only have to make a few
gradient steps, leading to much faster adaptation.

One crucial part of MAML is the policy gradient used in the meta-
optimization step. We experimented with three different policy gradi-
ent algorithms for this part (VPG, TRPO, and PPO) and found that
the policy gradient chosen had a large impact on our results. We
also examined the effect of other parameters, such as the number of
gradient (adapt) steps.

In addition to gaining insight into MAML, we wanted to use it on
the OpenAl Retro Contest to compare with other algorithms. We ulti-
mately found that meta-learning does not seem to do particularly well
for this scenario. The algorithm requires much more memory than
the baselines provided by OpenAl, and due to hardware limitations,
we had to made adjustments to the large state space for MAML to
run on the environment in a reasonable amount of time on our hard-
ware. Evaluating the other algorithms, PPO2 in particular, with this
downsampled state space resulted in MAML still underperforming
for this task.

It would be worth exploring future experiments in the Gym Retro
environment using MAML with alternative policy gradient algorithms
or with more computation- and memory-efficient implementations.

1 Introduction

While many machine learning algorithms can achieve impressive results with large
amounts of data, we may often encounter situations where we only have access to
small datasets for particular tasks. We would also hope that our learned models
would be able to leverage prior experience on different tasks in generalizing to new
tasks, as humans do. Moreover, the ability to generalize can be seen as a measure of
intelligence, one that we aim to train in artificial agents.

This makes few-shot learning an interesting and important application to explore.
In the context of deep reinforcement learning (RL), this translates to attempting to
make the learning process more efficient for a new task after already learning on a
series of previous tasks. This idea of learning to learn is known as meta-learning,
and in the context of RL tasks, Meta-RL.

There have been many different interesting approaches to the problem that aim to
gain a different type of insight from previous experience, such as meta-learning
exploration strategies (Gupta et al.| [2018]]) and loss functions (Houthooft et al.
[2018]]). Of course, since our final goal is to learn a policy, there has also been work
in meta-learning the policy parameters directly through optimization techniques.
The main work in this area, which we build upon, is Model-Agnostic Meta Learning
(MAML), a gradient-based Meta-RL algorithm that optimizes to learn a set of
parameters which can easily adapt to new tasks (Finn et al.|[2017]).

Our primary focus in this project is to investigate the challenges and potential
improvements to MAML in applying it to few-shot RL tasks. We tried to understand
what makes meta-learning hard to use, and found that among the various parameters
to tune and modifications to make, changing the policy gradients used in the meta-
optimization had a large effect on the final result. We also wanted to attempt to
tune MAML to tackle a more challenging application. To this end, we used the
Sonic the Hedgehog games in the OpenAl Retro Contest (Nichol et al. [2018]]) as a
much harder benchmark for the generalization performance of our MAML models.
However, we found that our results on this transfer learning contest were not as good
as we hoped.

2 Gradient-based Meta-RL

2.1 Meta-RL

The meta-learning problem setup, as described in [Finn et al. [2017], entails training
amodel f to map inputs x to outputs a where we train the model on a series of tasks,
then train the model on new tasks, with the goal of adapting to these newer tasks faster.
Of course, if the tasks seen during training time are not similar to the tasks at test
time, it may be much harder to meta-learn a policy from which we can quickly adapt
to new tasks, so we make the assumption of a distribution over tasks p(7), where
each task 7 is defined by 7 = {L(x1,a1,...,xH,an),q(x1), ¢(xi11|2e, a0), H}
with loss function £, initial distribution of observations ¢(z1), transition distribution
q(z¢41|24, ar), and episode lengths of H.

In the context of Meta-RL, each task 7; we sample is itself a Markov decision process
(MDP) defined by a state space .S, action space A, transition probabilities P;, and
reward function R?;. Note that each task shares the same state space and action space.
In our meta-learning formulation, the loss functions £7; are just the negation of the
reward functions R;.

For few-shot learning scenarios, we consider learning from only /C samples of each
new task 7;, where each sample is drawn from the initial distribution ¢;(x;) with
trajectory drawn from transition distribution g;(x1|x¢, a;). This part of the process
is known as meta-training, wherein we use our KU samples of a particular task, along
with that task’s loss function £;, to train our model, then evaluate our model on new
samples from the same task 7;. This new data comes from the same distributions g;,
and we treat this test error on a particular training task as the training error in the
overall meta-learning objective.

Once we complete our meta-learning process on the training tasks, we sample new
tasks for meta-testing. Crucially, these new tasks come from the same distribution
over tasks p(7). This allows us to evaluate the ability of our trained model to quickly
generalize to new tasks.

2.2 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) presents a direct approach to training
our meta-learner (Finn et al. [2017]). Intuitively, our goal in Meta-RL is to train a
policy that can adapt to new tasks faster by training on similar tasks. MAML is a
gradient-based algorithm that sets up precisely this goal as an optimization problem,
such that we can learn a set of model weights # that parameterize our model fy.
We hope that the learned model parameters serve as an improved initialization for
adaptation on new tasks, such that they can achieve good results in a few gradient
steps.

From this intuition we can formulate our meta-objective as:

min > Lylfa)

Ti~p(T)

Concretely, after initializing our model parameters 6, we set up an outer meta-
optimization loop where in each iteration we sample some batch of tasks 7; from
p(T). For each task 7; that we sample, we train (adapt) using an inner optimization
loop with few-shot learning by sampling K trajectories with our model f,. With
these trajectories, along with the task’s loss function £7;, we are able to perform
gradient descent on the model parameters:

9; — 0 — Ong,Ci(fg)

This update represents one adaptation step; we can of course perform multiple
adaptation steps, and in Section 3.1 we explore the performance results of doing so.

Once we finish computing a set of updated model parameters ¢ corresponding to
each task 7; in a batch, we perform meta-optimization on our model parameters ¢
with the following update rule:

0«0 — (Ve Z L7 (for)

Ti~p(T)

In the two updates above, a and (3 are hyperparameters representing the step size
and meta step size, respectively.

In practice, however, in the context of RL tasks, we cannot always easily solve for
the gradient of the expected rewards. Instead, policy gradients are often employed
to perform these updates directly to the policies. As in|Finn et al.|[2017]], both our
inner optimization and meta-optimization are performed with policy gradients. In
our experiments, one of the primary factors we explored was the use of different
policy gradients in computing the meta-optimization updates.

2.3 Policy Gradients

Policy gradients are algorithms that aim to directly maximize expected reward (or
minimize loss) by using the gradient of the objective with respect to the model param-
eters 6. In MAML, policy gradients are used in the meta-optimization step, and we
found that using different policy gradient algorithms changed results drastically. For
our experiments we compared three on-policy algorithms: vanilla policy gradients,
trust-region policy optimization (TRPO), and proximal policy optimization (PPO).
We chose VPG to use as a simple baseline, TRPO because it was used in the original
experiments done by [Finn et al.|[2017]], and PPO because it is a popular and more
recent algorithm.

Vanilla Policy Gradients In VPG, we run the policy and approximate the gradient
of the expected reward .J(6) with respect to the model parameters:

VoJ(0) ~ Z ZV@lOgﬂ'Q atlst)) Zr st al))

7

We then use this estimation in our standard update rule 6 < aVy.J(6)

TRPO In TRPO (Schulman et al.[[2017al]), the idea is to try to still improve model
performance, but without taking gradient steps that change the policies too much.
This is enforced with a constraint similar to KL-Divergence, which aims to limit the
size of each update.

PPO PPO (Schulman et al.| [2017b]]) approaches the policy gradient with sim-
ilar ideas of constraining the policy updates, but instead of being based on KL-
Divergence, uses clipping on the objective.

4

3 Experiments

3.1 Mujoco HalfCheetah

We looked at MAML’s performance on a simple meta-learning task, implement-
ing the MuJoCo Half-Cheetah Forward/Backward environment described in
[2017], and comparing the performance of MAML-VPG, MAML-TRPO, and
MAML-PPO. This environment selects a goal direction (-1 or 1) with equal prob-
ability and rewards the agent based on the velocity in the selected direction. The
model trained by MAML in both cases is a MLP with two hidden layers of size 100,
and uses 20 rollouts per gradient step, for 3 gradient steps.

Performance on Meta-HalfCheetah with 3 Gradient Steps

250
200
2 150
E 100 —— MAMLTRFO
" I MAML-PPO
B cp —— MAMLVPG
i
=]
<L 0-
=0 4 W
~100 -
0 50 100 150 200 250 300

[teration
We found that VPG performed much worse than the other two, while PPO outper-

formed TRPO. This was mostly expected, as VPG is much simpler than the other
two, while we found TRPO to be harder to train.

MAML-PPO on Meta-HalfCheetah with varying gradient steps

250 1

200 1

150 +

100 +

Average Reward

—— 3 Gradient Steps
—100 4 1 Gradient Step

0 50 100 150 200 750 300
lterations

We also experimented with tuning the number of adapt steps (gradient steps) during
the training process. The general trend we found was that increasing the number of
gradient steps improves performance, at the cost of training time.

3.2 Gym Retro Environments

OpenAl has previously released a set of baselines for various algorithms regarding
few-shot learning in the Gym Retro environment (Nichol et al. [2018]), based
on Sonic the Hedgehog levels from games on the SEGA Genesis. We sought to
determine how well MAML would perform for these tasks.

3.2.1 Modifications

Due to hardware limitations, we were unable to run MAML with optimal parameters.
Specifically, we made the following adjustments to allow us to use MAML with the
Sonic environments:

Image Warping and Frame Stack The baselines provided by OpenAl warp the
emulator’s 224x320x3 images into a 84x84x4 stack of 4 grayscale images. We
consistently ran into memory issues with this state size, so we chose to not use
the frame stack and to downsample the images to 42x42. For the PPO2 baseline,
this affected performance (run on validation level GreenHillZone Act2 for 200k
timesteps):

State Size | PPO2 Average Reward
84x84x4 2477.6 £435.3
42x42 1992.5 + 750.1

Policy For PPO2 on the GreenHillZone Act2 level, we compared the performance
of a CNN versus a MLP with two hidden layers of size 100. For our experiments
involving MAML, we used the MLP policy.

Policy PPO2 Average Reward
Nature CNN 1992.5 + 750.1
MLP 1943.3 £+ 865.0

3.2.2 Sonic Experiments
With the listed adjustments, we used our MAML implementations to train a 2-layer

MLP, and evaluated the fast learner for 100,000 or more timesteps. Below we
compare the PPO2 baseline and CNN policy with the MAML agents.

6

Cumulative Average Episode Score Cumulative Average Validation Score

120
—— MAMLTRPO 60 —— MAML-PPO

100

Scare

10

) 20000 40000 &0doo andoo 0 0 0 & &0 100
Timestep [teration

Cumulative Average Episode Score

000 { — Ppo2
1800
1600
o 1400
Q
% 1200
1000
800

600

o 25000 50000 75000 100000 125000 150000 175000
Timestep

As expected, given the previous baselines run with Reptile, the MAML approach
performed significantly worse compared to PPO2. We suspect that a reason for
this disparity is due to workarounds we implemented to address some high costs of
MAML.

4 Conclusion

In this project we explored gradient-based meta-RL by experimenting with how
different modifications affect MAML, and found that the choice of policy gradient
in the meta-optimizer (as well as the number of gradient steps) had the largest affect
on final performance. We also attempted to apply MAML to the Sonic the Hedgehog
games in the OpenAl Retro Contest. However, our results were not as good as we
had hoped. One reason for this was that we had to make several adjustments to the
environment to stomach the large memory usage of MAML, which seem to have
drastically hurt our performance. However, we also know that MAML in general
was not a particularly successful approach during the contest. This could be because
MAML usually aims to optimize for parameters that are able to reach good values for
a new task in a very small (e.g. <3) number of gradient steps. However, the various
Sonic levels are different enough and the game hard enough (even the best models
could not get close to human performance) that trying to learn a good initialization
to take a few gradient steps on unseen test levels is simply too ambitious.

References

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks, 2017.

7

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Meta-reinforcement learning of structured exploration strategies, 2018.

Rein Houthooft, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski,
Jonathan Ho, and Pieter Abbeel. Evolved policy gradients, 2018.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman.
Gotta learn fast: A new benchmark for generalization in rl, 2018.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017b.

	Introduction
	Gradient-based Meta-RL
	Meta-RL
	Model-Agnostic Meta-Learning
	Policy Gradients

	Experiments
	Mujoco HalfCheetah
	Gym Retro Environments
	Modifications
	Sonic Experiments

	Conclusion

